
Journal of Engineering Mathematics 31: 131–142, 1997.
c 1997 Kluwer Academic Publishers. Printed in the Netherlands.

An efficient storage scheme for reduced chemical kinetics
based on orthogonal polynomials

H. NIEMANN1, D. SCHMIDT1 � and U. MAAS2
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Abstract. Simplified chemical kinetic schemes are a crucial prerequisite for the simulation of complex three-
dimensional turbulent flows, and various methods for the generation of reduced mechanisms have been developed
in the past. The method of intrinsic low-dimensional manifolds (ILDM), e.g., provides a mathematical tool for the
automatic simplification of chemical kinetics, but one problem of this method is the fact that the information which
comes out of the mechanism reduction procedure has to be stored for subsequent use in reacting-flow calculations.
In most cases tabulation procedures are used which store the relevant data (such as reduced reaction rates) in
terms of the reaction progress variables, followed by table look-up during the reacting-flow calculations. This can
result in huge amounts of storage needed for the multi-dimensional tabulation. In order to overcome this problem a
storage scheme is presented which is based on orthogonal polynomials. Instead of the use of small tabulation cells
and local mesh refinement, the thermochemical state space is divided into a small number of coarse cells. Within
these coarse cells polynomial approximations are used instead of frequently used multi-linear interpolation. This
leads to a considerable decrease of needed storage. The hydrogen-oxygen system is considered as an example.
Even for this small chemical system, a decrease of the needed storage requirement by a factor of 100 is obtained.
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1. Introduction

The interest in the numerical simulation of reacting flows has grown considerably during the
last years. The underlying chemical kinetics of combustion processes is (at least for aliphatic
hydrocarbons) adequately well understood [1], and numerical methods are available, which
allow to couple chemical kinetics with flow and molecular transport. Numerical simulations
of laminar flames in one- or two-dimensional configurations have become a standard tool
in combustion research (see, e.g. [2, 3]). However, if one is interested in general, multi-
dimensional, turbulent flames, a detailed treatment of the chemical and physical processes is,
and will be in the near future, computationally prohibitive [4]. Thus, simplified models for the
turbulence (see, e.g., [4–6]), as well as for the chemical kinetics have to be devised.

The need of simplified models for the chemistry stems from the fact that for each chemical
species (which can be more than 1000 in the low-temperature oxidation of higher hydrocarbons
[7]) a species-conservation equation has to be solved. This is possible, if simple systems like
spatially homogeneous ignition (e.g. in shock tubes) are simulated [1], but computationally
prohibitive for other reacting flows.

Almost 100 years ago Bodenstein [8] observed that some chemical reactions are so fast that
some chemical species in the reaction system are in a quasi-steady state. Based on the ideas of
Bodenstein, many attempts have been made to develop simplified descriptions of chemical-

� Author for correspondence.

PREPROOF *INTERPRINT* J.V.: PIPS Nr.: 128135 ENGI
engi629.tex; 17/06/1997; 10:12; v.6; p.1



132 H. Niemann et al.

reaction systems, e.g., for the simulation of complex combustion processes. A variety of
different approaches can be found in the literature, such as systematically reduced mechanisms
[9], the constrained equilibrium approach [10], computational singular perturbation [11, 12],
repro-modelling [13], dynamic dimension reduction [14], or the method of intrinsic low-
dimensional manifolds [15–17], to name only a few examples. Good surveys of current work
can be found in [9,18, 19]. In this work we shall present some new results of the implementation
of reduced chemistry based on intrinsic low-dimensional manifolds (ILDM).

The scalar field of a reacting flow involving ns species evolves in time according to an
(n = ns + 2)-dimensional system of partial differential equations

@ 

@t
= F ( ) + � ( ;r ;r2 ): (1)

In this equation  = (h; p; w1=M1; w2=M2; : : : ; wns=Mns)
T denotes the vector of scalars

with h = specific enthalpy, p = pressure, Mi the molar mass and wi the mass fraction of the
species i. F ( ) denotes the vector of chemical reaction rates, and � ( ;r ;r2 ) the vector
describing all the physical processes, such as convection, diffusion, heat conduction, etc.

The ILDM-approach [15, 16], as well as all the other approaches, uses the fact that in
typical reaction systems a large number of chemical processes are so fast that they are not rate
limiting and can be decoupled. All the method does is to identify intrinsic low-dimensional
manifolds in the (n = ns + 2)-dimensional state space with the property that after a short
relaxation time the thermochemical state of the system has relaxed onto these attracting low-
dimensional manifolds. Then the state of the chemical system is a known function of only
a few N variables � which parameterize the manifold, i.e.  =  (�), and the governing
n -dimensional equation system (1) can be projected onto the N -dimensional subspace

@�

@t
= S(�) + � (�;r�;r2�): (2)

Thus, the ILDM-approach basically consists of three steps [15–17, 20]

� Identify the ILDM and obtain information about the coupling of the chemical kinetics
with flow and molecular transport.

� Store the information, namely  (�) and the projection � ! � for subsequent use in the
reacting-flow simulation.

� Solve the projected system of partial differential equation (2) for the scalar field.

Various examples have been treated and they have verified the approach [17, 20–24]. It turns
out that the main remaining challenges in the implementation of the method are

� The efficient numerical calculation of the ILDM.
� A local adaption of the dimension of the manifolds based on the desired accuracy of the

reduced scheme.
� The efficient storage of all the data needed for the subsequent use in the reacting flow

calculation.

In this paper we address the third item, namely an efficient storage of the ILDM.
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A storage scheme for reduced chemical kinetics 133

Figure 1. Different grid-types, isolines denote equal rates of formation of H2O. (Left: Conventional storage
scheme, Right: New storage scheme with coarse cells).

2. Polynomial storage scheme

2.1. PROBLEM FORMULATION

The implementation of ILDM-reduced chemistry in CFD-codes is based on the projection
of the n -dimensional conservation equations for the scalar field onto the N -dimensional
attracting ILDM. This procedure requires a knowledge of several properties of the reduced
scheme, namely

� N rates S(�) for the reduced variables;
� the n state variables  (�) characterizing the manifold and
� and N � n entries of the projection operator P (�) which describes the coupling of the

chemistry with the physical processes.

Because the evaluation of the ILDM is quite time consuming, and the results are usually
used in a large number of different CFD-calculations, the properties given above are usually
calculated beforehand and stored in terms of the reduced state variables �.

The storage scheme for the ILDM used up to now was based on a table-set-up procedure
[16]. The tabulation region was predefined and an adaptive grid with local mesh refinement
was used (see Figure 1). Within the grid cells multi-linear interpolation was used to calculate
the properties from the values at the grid nodes. The disadvantage of this storage scheme
is the huge size of these tables for future applications. If we are thinking of modelling real
diesel-engine combustion, at least 3 reaction progress variables are needed. Additionally the
parameters pressure, enthalpy and mixture fraction have to be varied as tabulation coordinates,
leading to a table with tabulating dimension at least N = 6. Considering a case where about
1000 species are taking part in the reactions with at least 10 grid points being used in each
tabulation direction, we end up with about 109 numbers to be stored. This table cannot be
handled. The problem gets worse, if we account for differential diffusion, adding element
composition variables to the set of reduced variables. From this it can be seen that an efficient
storage of the reduced mechanism is crucial for its use in CFD-codes, and several approaches
alternative to the tabulation have been pursued (see, e.g., [13, 25, 26]).

We start the development of our storage procedure based on two observations

� It is evident that, if we replace the multi-linear interpolation in the grid cells by higher-
order polynomial, the accuracy is improved considerably.
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� If we use the tabulation procedure outlined above [16], it is inevitable that the refinement
is based on all the different properties which have to be stored. Thus, the property with
the worst local behavior defines the local grade of refinement, though all other properties
might have a smooth behavior. A solution to overcome this is to use different interpolating
functions for each property with adaptive complexity and order.

Multidimensional polynomials are the most simple functions to use. They can be evaluated
efficiently with Horner schemes. The idea to use polynomials for approximation of chemical-
reaction-rate data is shown in [25]. An overview of the literature can be found there, too.
However, this approach has some disadvantages: The use of only one polynomial for the
whole tabulation domain usually requires a very high order of the polynomial. This will
lead to numerical problems in every fitting algorithm. If this problem is circumvented by
dividing the tabulation domain into sub-domains and fitting the different sub-domains with
their own low-grade polynomials, we observe that the properties are not continuous at the cell
boundaries. This leads to problems in using the table in CFD-codes, especially when gradient
based solvers are used.

In order to overcome these deficiencies, we develop a procedure, which divides the whole
state space into sub-domains (represented by coarse cells, cf. Figure 1), uses medium-grade
polynomials within these cells, and additionally ensures continuity at the boundaries of the
cells. The approximating polynomials are computed independently for each cell. This enhances
the flexibility of the table set-up and enables a parallelization of the tabulation code.

2.2. COARSE GRID AND LOCAL COORDINATES

Let us start the analysis with a brief survey of the nomenclature that we have adopted. The
manifold is given as a subset M of the state space with

M = f (�) j � 2 Dg; (3)

where � !  defines the mapping of the reduced variables onto the respective points of
the manifolds, and D defines the domain of the reduced variables. The mappings � !  

and  ! �, as well as the domain D are obtained during the generation of the ILDM.
This will be the topic of another publication. In the following we assume explicitly that the
mapping (the parameterization of the manifold) as well as D are known. Thus, in order to
simplify the presentation, we start from a given manifold which has been obtained using a
tabulation procedure [16]. As an example we use the ILDM of a hydrogen–oxygen system.
The two-dimensional manifold is parameterized in terms of two reaction-progress variables
�1 = wH2O=MH2O and �2 = wH=MH, which are in the intervals 0 < �1 < �max

1 and 0 < �2 <

�max
2 . The conventional tabulation of the manifold is shown in the left part of Figure 1. The

manifold is tabulated by a rectangular grid with local mesh refinement. Within the fine cells
multilinear interpolation is used. The new storage scheme, allowing an efficient storage of
the ILDM, is based on a division of the domain of the manifold into non-rectangular coarse
cells, which can be seen in the right part of Figure 1. The accuracy requirement is then met by
use of higher-order interpolation. Thus, fine grid cells with first-order interpolation in the old
scheme are replaced by coarse grid cells with higher-order interpolation. For simplicity of the
table lookup, it was decided to use coarse cells that can be mapped on rectangular cells. So the
coarse cells have always 2N corners (N is the tabulation dimension). The choice of the coarse
cells can, of course, be guided by the information coming out of the mechanism-reduction
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Figure 2. Transformation from global coordinates to local cell-coordinates.

procedure. For the example considered here we base the set-up of the coarse cells on the
known behavior of the reaction rates (cf. Figure 1). Having specified the coarse cells, we
establish the local coordinates in each cell by the mapping � ! y of the cell on a rectangular
cell with the coordinates y, as shown in Figure 2. The cell is bounded by the cell coordinates
y1
i and y2

i , i = 1; 2; : : : ; N , and the cell is given by SN = fy j yi 2 [y1
i ; y

2
i ]; i = 1; 2; : : : ; Ng.

The choice of the local corner coordinates y1
i ; y

2
i ) is arbitrary in the mapping aspect.

The remaining task is now to find a polynomial representation of S(�);  (�) and P (�)
within the coarse cells with the additional constraint that the functions are continuous over
the cell boundaries.

2.3. POLYNOMIAL INTERPOLATION WITHIN THE COARSE CELLS

2.3.1. Ensuring continuous functions at the boundaries

The idea behind making continuous functions between two neighbouring cells is to calculate a
function on the shared boundary first, and then to use this boundary function for the calculation
of the approximating function (cell function) within the cell. On the boundary the cell function
is forced to degenerate to the boundary function. For the two-dimensional example shown in
Figure 1 this means that we must calculate functions on the straight border lines first, and then
fitting the area inside the cells.

Given anN -dimensional cell SN , we have 2N bounding hyperplanes SN�1
i , i = 1; 2; : : : ;

2N , which shall be denoted by Rj
i = fy j y 2 SN ^ yi = y

j
i g; i = 1; 2; : : : ; N , and j = 1; 2.

On the bounding hyperplanes (y 2 Rj
i ) the approximating functions shall be given by bji (y).

In the cell the following ansatz is used for the approximating function F (y)

F (y) = Z(y)L(y) +B(y): (4)

On the boundaries SN�1
i the function Z(y) is forced to equal zero

Z(y) =
NY
i=1

(yi � y1
i )(yi � y2

i ): (5)

There the ansatz (4) degenerates to F (y) = B(y). By defining the boundary function B(y)

such that B(y) = b
j
i (y) for all y in Rj

i , we ensure continuity between cells. The calculation
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of B(y) is somewhat tricky. It is based on the condition that the polynomials of bji (y) do not

contain any powers of yi, together with the condition that B(y) = b
j
i (y) for all y in Rj

i . From
this a recursion formula for the coefficients of the monomials can be obtained. The fitting in
the interior cell is done by a serial expansion of L(y) under the above constraints, so that the
approximation error between F (y) and some reference points from the ILDM is kept below
a given limit.

2.3.2. Calculation of the approximating polynomials

The function L(y) is calculated in a least-squares sense which minimizes the relative error
between F (y) and a set of reference points calculated inside the cell. Due to the previous
calculation of B(y) and its linear interpolation property less effort has to be taken in the
least-squares step. This is especially helpful for the application on ILDM-tables, because the
evaluation of points on the manifold is quite expensive, and the number of reference points
needed to be calculated should be as small as possible.

The aim in calculating L(y) is to reduce the average relative error between the function
F (y) and the values p(iy) at the m reference points iy below a given limit "

mX
i=1

 
F (iy)� p(iy)

p(iy)

!2

< m"2: (6)

This is achieved by a serial expansion of L(y). For this, the following ansatz is used

L(y) =
kX
j=1

aj�j(y): (7)

Here �j(y) are the basis functions for the series. The aj are coefficients that have to be adjusted
in the least-squares step.

Introducing the serial expansion (7) into the ansatz (4) combined with the condition of
minimizing the sum of the squared relative errors (6), we are led to the following linear system
of equations from which to determine the k unknown coefficients al

kX
j=1

aj

mX
i=1

 
B(iy)

p(iy)

!2

�j(
iy)�l(

iy) +
mX
i=1

 
B(iy)

p(iy)
� 1

!
Z(iy)

p(iy)
�l(

iy) = 0;

l = 1 : : : k: (8)

In the above form all k equations are coupled. A real expansion of the series in the sense of
calculating all al independently one by one, until the required accuracy is achieved, seems to
be computationally prohibitive. But defining a scalar product by

h�j ; �li =
mX
i=1

 
B(iy)

p(iy)

!2

�j(
iy)�l(

iy) (9)

and choosing the basis functions orthonormal according to this definition, we may diagonalize
the linear equation system (8) and the coefficients al can be calculated independently by

al =
mX
i=1

 
1�

B(iy)

p(iy)

!
Z(iy)

p(iy)
�l(

iy); (10)
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Figure 3. Cell with a set of reference points inside and boundary functions b
j

i
(y) on the boundaries Rj

i
.

until the accuracy is high enough.
The coefficients to build the basis functions �j(y) from the monomials (1; y1; y2; : : : ; yN ;

y2
1; y1y2; y

2
2 ; : : : ; y

2
N ; y

3
1; : : :) are calculated in parallel to the expansion of the series L(y)

by the Gram–Schmidt-orthogonalization procedure [27]. The well-known instability of the
Gram–Schmidt process is not crucial in this application, because instead of calculating high-
order polynomials, we reduce the size of the coarse cells, which results in a smaller number
of necessary basis functions that have to be orthogonalized. At this point it turns out to be
numerically advantageous to choose the local coordinates in the range from �1 to 1 in each
dimension.

Another advantage of this scheme is the large amount of freedom in choosing the reference
points p(iy) to adjust the approximating polynomial. In principle, no regular pattern is needed,
as it is sketched in Figure 3. If there are numerical problems in calculating a reference point
at some local coordinates iy (e.g. a point may be outside of the range of existence of the
manifold), this point p(iy) can be rejected without causing any problems. But for a reliable
outcome of the approximation, a homogeneous distribution of reference points should be
achieved. In the current implementation, the sample points p(iy) are calculated on regular
meshes, which is demonstrated in Figure 4. The first point to be calculated is the one in the
middle of the cell. By this, 2N sub-cells are defined. The next points to be calculated are the
mid-points of these sub-cells. This process of defining minor sub-cells and evaluation of mid-
points can be continued, until there are sufficient reference points. The number of calculated
reference points m is adjusted automatically to the number of used monomials k. In this way
unphysical waves and oscillations in the approximating polynomial can be avoided. In the
current implementation the grid is refined one level by calculation of additional points, when
m < 3k. After calculating the coefficients of B(y), Z(y) and L(y) we observe that they form
one resulting polynomial F (y). These coefficients are tabulated.

2.3.3. Calculation of the boundary-element-functions

Up to this point the calculation of the boundary-element-functions bji (y) has not been men-
tioned. They are calculated by the same algorithm according to ansatz (4) in one lower
dimension. Here the same problem of the sub-element boundary functions arises. Each N -
dimensional cell has �iN i-dimensional boundaries Sij (j = 1; 2; : : : ; �iN ), where

�iN =
N !

i!(N � i)!
2N�i: (11)
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Figure 4. Grid of reference points with 3 levels of refinement.

Figure 5. Idea of fitting algorithm in a two-dimensional example: (1) Setup of rectangular cell. (2) Evaluation of
the values at the corners of the cell. (3) Fitting of the one-dimensional boundaries of the two-dimensional cell.
(4) Fitting of the two-dimensional inner area of the cell.

Thus, a 2-dimensional cell has �0
2 = 4 corner points and �1

2 = 4 bounding edges, a 3-
dimensional cell has �0

3 = 8 corner points, �1
3 = 12 bounding edges, and �2

3 = 6 bounding
surfaces. For the set-up of the boundary functions we perform a sweep through the dimensions
(see Figure 5)

(1) Start with the �0
N corner points S0

j of the cell, and use the values as boundary-element
functions to calculate the approximating functions on the �1

N bounding edges S1
j .

(2) Use the approximating functions on these bounding edges as boundary functions to
calculate the approximating functions on the the �2

N bounding surfaces S2
j .

(3) Continue this process until the approximating function in the cell (�NN) has been calculated
from the boundary functions defined by the approximating functions on the hyperplanes
(�N�1
N ).
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Figure 6. Relative approximation error for the mass fractions of OH radicals for the ILDM of a stoichiometric
H2-O2-system.

3. Application to the ILDM of a stoichiometric H2-O2 system

We shall now demonstrate and verify the new tabulation method, using the ILDM of a
stoichiometric hydrogen-oxygen system [17]. In this example 52 properties are tabulated in
terms of two reaction-progress variables (�1 = wH2O=MH2O; �2 = wH=MH). The set-up of
the coarse grid has been done by hand. A small cell has been inserted near the equilibrium
value to allow a high resolution of the reaction rates near equilibrium. (cf. Figure 1). The error
tolerance (average relative error) for the fitting procedure was set to 0�05. Having in mind the
usual uncertainty of kinetic data, we observe that this accuracy is high enough for practical
calculations. But, of course, the accuracy can be increased if necessary. The grade of the
approximating polynomial is adapting automatically to match the desired accuracy. For this
application the resulting grade changes from constant monomials up to grade-5 polynomials.
Most properties are fitted by grade-3 polynomials.

In Figure 6 the relative approximation errors for the mass fractions of OH-radicals are
shown as contours. The small cell contains the domain around the chemical equilibrium where
enhanced accuracy is needed. It can be seen that the equilibrium region is approximated with
high accuracy. This is desirable for the application in CFD-codes, due to the high sensitivity
of the CFD-results on the used chemistry near the equilibrium value. Furthermore it can be
seen from Figure 6 that the relative error at the cell boundaries is continuous and vanishes at
the cell corners. Thus, it is shown that the algorithm produces fitting polynomials with the
desired continuity between the cells. In addition, Figure 6 shows the smooth and well-behaved
property of the fitting. The highest relative errors are in the range of the pre-defined average
error tolerance and no artificial oscillations (known from simple polynomial approximations)
are produced. This is expected, because a least-squares approach, involving far more reference
points than coefficients to be fitted, is used.

The computing time for the polynomial storage scheme is of the order of a few minutes.
Compared to the time for the calculation of the manifold itself, this is negligible. On the
other hand, the storage requirement for the ILDM is reduced dramatically if the polynomial
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Figure 7. Profiles of temperature (�) and O-radicals (2) in a premixed laminar H2-O2 flame. The lines denote
computation with detailed and the symbols with reduced chemistry. (Full symbols: standard look-up table, Empty
symbols: new polynomial table).

approximation is used. The table with the old storage scheme needs about 15 Mbytes of
storage, whereas the new table does only occupy about 80 Kbytes.

The results presented above show the improvement of the new scheme compared with our
previously used storage scheme [16]. In order to verify the approach and its implementation
in CFD-codes further, we performed laminar flat-flame calculations for a stoichiometric
hydrogen-oxygen system (cf. [17]). In the flat-flame code the table look-up procedure has
been replaced by a subroutine that evaluates the polynomial approximations. We performed
calculations of flame profiles for detailed chemistry, as well as for ILDM-reduced chemistry
using both storage schemes. The computation time is reduced drastically by the use of ILDM-
reduced chemistry for both storage schemes. In comparison with the old tabulation, the new
polynomial tabulation scheme does not affect the computation time significantly. Figures 7–9
show temperature and various species profiles in the flame. Temperature, major species H2 and
H2O, and minor species like O, OH and H are reproduced very well by the reduced schemes.
There is no significant difference between the two storage schemes, which is very promising,
because, on the other hand, the storage requirement is reduced by a factor of 200 when the
new polynomial approximation is used.

4. Conclusions

In most practical reacting-flow calculations the direct use of detailed chemistry is compu-
tationally prohibitive. Thus, reduced chemical-kinetics schemes are devised, which allow
to describe the chemical system in terms of a small number of reaction-progress variables,
and very often the information on the chemical kinetics (e.g., reaction rates) is calculated
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Figure 8. Profiles of H2 (r) and OH-radicals (�) in a
premixed laminar H2O2 flame. The lines denote com-
putation with detailed and the symbols with reduced
chemistry. (Full symbols: standard look-up table,
Empty symbols: new polynomial table).

Figure 9. Profiles of H2O (�) and H-radicals (3) in a
premixed laminar H2-O2 flame. The lines denote com-
putation with detailed and the symbols with reduced
chemistry. (Full symbols: standard look-up table,
Empty symbols: new polynomial table).

beforehand and stored for the CFD-calculation. We have developed a storage scheme based
on orthogonal polynomials. Instead of using a locally refined tabulation grid, together with
multi-linear interpolation within the grid cells [16], we divide the domain into a small number
of coarse cells and use polynomial approximations within these cells. Special methods assure
that the polynomial approximations are not only continuous within the coarse cells, but all over
the domain. The storage requirement is reduced considerably. In order to verify the approach,
we performed calculations of laminar premixed flat-flame calculations for a stoichiometric
hydrogen-oxygen system, using both detailed and ILDM-reduced chemistry. In this specific
example the storage requirement is reduced by a factor of 200. However, the storage procedure
is not restricted to this use in combination with ILDM-reduced chemistry. Other applications
of storage schemes are, e.g., the storage of pre-integrated reaction rates for turbulent flame
calculations [28] or the storage of laminar flamelet libraries [29]. For such applications the
polynomial storage scheme might also be used.
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